DS N° 1 Bis : Reprise fonctions (20 min)

- - 1. On introduit la fonction g définie sur \mathbb{R} par :

$$g(x) = (e^{3x} - 1)(3x + 4)$$

Dresser le tableau de signe de g.

Correction:

 $x \mapsto 3x + 4$ est une fonction affine qui s'annule en $-\frac{4}{3}$.

Etude du signe de $e^{3x} - 1$:

On a:

$$e^{3x} - 1 > 0 \iff e^{3x} > 1$$
 $\iff e^{3x} > e^{0}$
 $\iff 3x > 0$ (car exp est croissante)
 $\iff x > 0$

On en déduit donc le tableau de signes suivant :

x	$-\infty$		$-\frac{4}{3}$		0		$+\infty$
$e^{3x} - 1$		_		_	0	+	
3x+4		_	0	+		+	
g(x)		+	0	_	0	+	

2. Montrer que pour tout $x \in \mathbb{R}$, f'(x) = g(x).

Correction:

On a:

$$f'(x) = 3(x+1)e^{3x} + e^{3x} - 3x - 4$$

$$= e^{3x}(3x+4) - 3x - 4$$

$$= (e^{3x} - 1)(3x+4)$$

$$= g(x)$$

3. En déduire le tableau de variations de f.

Correction:

Comme on a le signe de f', on en déduit le tableau de variations :

x	$-\infty$	$-\frac{4}{3}$	0	$+\infty$
f'(x)	+	0	- 0	+
f(x)	$-\infty$	$\frac{8 - e^{-4}}{3}$	1	+∞

Où
$$f(0) = 1$$
 et $f(-\frac{4}{3}) = -\frac{1}{3}e^{-4} - \frac{3}{2} \cdot \frac{16}{9} + 4 \cdot \frac{4}{3} = \frac{8 - e^{-4}}{3}$.

4. Soit $a \in [-\frac{1}{2}; 0]$, comparer en justifiant f(a) et f(2a).

Correction:

Pour $a \in [-\frac{1}{2}; 0]$, on a : $-\frac{1}{2} \le a \le 0$ et donc $-1 \le 2a \le 0$ et finalement on a : $-1 \le 2a \le a \le 0$ et comme f est décroissante sur [0; 1], on en déduit $f(2a) \ge f(a)$.

DS N° 1 Bis : Reprise fonctions (20 min)

- (I) Soit f définie sur \mathbb{R} par $f(x) = (2-2x)e^{-x} x^2 + 4x$.
 - 1. On introduit la fonction g définie sur $\mathbb R$ par :

$$g(x) = (e^{-x} - 1)(2x - 4)$$

Dresser le tableau de signe de g.

Correction:

 $x \longmapsto 2x - 4$ est une fonction affine qui s'annule en 2.

Etude du signe de $e^{-x} - 1$:

On a:

$$e^{-x} - 1 > 0 \iff e^{-x} > 1$$
 $\iff e^{-x} > e^{0}$
 $\iff -x > 0$ (car exp est croissante)
 $\iff x < 0$

On en déduit donc le tableau de signes suivant :

x	$-\infty$		2		0		$+\infty$
$e^{-x}-1$		+		`+	0	_	
2x-4		_	0	+		+	
g(x)		_	0	+	0	_	

2. Montrer que pour tout $x \in \mathbb{R}$, f'(x) = g(x).

Correction:

On a :

$$f'(x) = -(2-2x)e^{-x} - 2e^{-x} - 2x + 4$$

$$= e^{-x}(2x-4) - (2x-4)$$

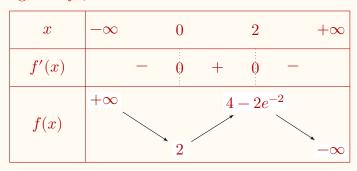
$$= (e^{-x} - 1)(2x - 4)$$

$$= g(x)$$

3. En déduire le tableau de variations de f.

Correction:

Comme on a le signe de f', on en déduit le tableau de variations :



Où
$$f(0) = 2$$
 et $f(2) = -2e^{-2} - 4 + 8 = 4 - 2e^{-2}$.

4. Soit $a \in [2; +\infty[$, comparer en justifiant f(a) et f(2a).

Correction:

Pour $a \in [2; +\infty[$, on a alors $2 \le a \le 2a$ et f est décroissante sur $[2; +\infty[$, donc $f(a) \ge f(2a)$.