DS N° 2 : Suites (1h15)

(9 points) Partie A

Soit (u_n) la suite définie par $u_0 = 30$ et, pour tout entier naturel $n, u_{n+1} = \frac{1}{2}u_n + 10$. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = u_n - 20$.

1. Calculer les valeurs exactes de u_1 et u_2 .

Correction:

On a:

$$u_1 = \frac{1}{2} \times 30 + 10 = 15 + 10 = 25$$

$$u_2 = \frac{1}{2} \times 25 + 10 = 12,5 + 10 = 22,5$$

2. Démontrer que la suite (v_n) est géométrique.

Correction:

On a pour $n \in \mathbb{N}$:

$$\begin{split} v_{n+1} &= u_{n+1} - 20 \\ &= \frac{1}{2}u_n + 10 - 20 \\ &= \frac{1}{2}u_n - 10 \\ &= \frac{1}{2}(u_n - 20) \\ &= \frac{1}{2}v_n \end{split}$$

Donc la suite (v_n) est géométrique de raison $q = \frac{1}{2}$ avec $v_0 = u_0 - 20 = 10$.

3. Exprimer \boldsymbol{v}_n en fonction de n pour tout n entier naturel.

Correction:

Par propriété, on déduit pour
$$n \in \mathbb{N}$$
 : $v_n = v_0 q^n = 10 \left(\frac{1}{2}\right)^n$.

4. En déduire que, pour tout entier naturel $n, u_n = 20 + 10 \left(\frac{1}{2}\right)^n$.

Correction:

Nous avons $v_n=u_n-20,$ donc $u_n=v_n+20$ et donc : $u_n=20+10\left(\frac{1}{2}\right)^n$

5. Déterminer la limite de la suite (u_n) .

Correction:

On a
$$-1<\frac{1}{2}<1,$$
 donc par propriété $\lim_{n\to+\infty}\left(\frac{1}{2}\right)^n=0$ et donc par somme $\lim_{n\to+\infty}u_n=20.$

Partie B

Soit (w_n) la suite définie pour tout entier naturel n par :

$$\begin{cases} w_0 = 45 \\ w_{n+1} = \frac{1}{2}w_n + \frac{1}{2}u_n + 7 \end{cases}$$

1. Calculer que w_1 .

Correction:

On a
$$w_1 = \frac{1}{2}w_0 + \frac{1}{2}u_0 + 7 = \frac{1}{2}45 + \frac{1}{2}30 + 7 = 44,5$$

On souhaite écrire une fonction suite, en langage Python, qui renvoie la valeur du terme w_n pour une valeur de n donnée. On donne ci-dessous une proposition pour cette fonction suite.

```
def suite(n):
1
2
       u = 30
       w = 45
3
       n=0
4
       while n<30:
5
           u=u/2+10
6
           w=w/2+u/2+7
7
           n=n+1
8
       return w
```

2. L'exécution de suite(1) ne renvoie pas le terme w_1 . Comment modifier la fonction suite afin que l'exécution de suite(n) renvoie la valeur du terme w_n ?

Correction:

L'erreur est que il change la valeur de u et calcule u_1 avant d'avoir calculer w_1 . Dans l'état, il calcule d'avord u qui donne 25 puis la valeur $w=\frac{45}{2}+\frac{25}{2}+7=77$ et ce n'est pas la bonne valeur.

Il faut inverser les lignes 6 et 7 pour calculer w avant de changer la valeur de u. Le calcul pour $\mathtt{suite}(1)$ donne alors $w = \frac{45}{2} + \frac{30}{2} + 7 = 44,5$ qui est bien la bonne valeur.

3. (a) Montrer, par récurrence sur n, que pour tout entier naturel n on a :

$$w_n = 10n \left(\frac{1}{2}\right)^n + 11 \left(\frac{1}{2}\right)^n + 34$$

Correction:

On montre par récurrence que pour tout $n \in \mathbb{N}$:

$$w_n = 10n \left(\frac{1}{2}\right)^n + 11 \left(\frac{1}{2}\right)^n + 34$$

Initialisation : $w_0 = 45$ et la formule donne pour n = 0 : 11 + 34 = 45. Donc l'initialisation est faite.

Hérédité : Pour $k \in \mathbb{N}$, supposons $w_k = 10k\left(\frac{1}{2}\right)^k + 11\left(\frac{1}{2}\right)^k + 34$ et montrons la propriété au rang suivant :

On a:

$$\begin{split} w_{k+1} &= \frac{1}{2}w_k + \frac{1}{2}u_k + 7 \\ &= \frac{1}{2}(10k\left(\frac{1}{2}\right)^k + 11\left(\frac{1}{2}\right)^k + 34) + \frac{1}{2}(20+10\left(\frac{1}{2}\right)^k) + 7 \\ &= 10k\left(\frac{1}{2}\right)^{k+1} + 11\left(\frac{1}{2}\right)^{k+1} + 17 + 10 + 10\left(\frac{1}{2}\right)^{k+1} + 7 \\ &= 10(k+1)\left(\frac{1}{2}\right)^{k+1} + 11\left(\frac{1}{2}\right)^{k+1} + 34 \end{split}$$

où dans cette dernière égalité on a factorisé par $10\left(\frac{1}{2}\right)^{k+1}$.

Cette dernière égalité est le résultat au rang k+1 et donc l'hérédité est démontrée.

Conclusion: Pour tout
$$n \in \mathbb{N}$$
: $w_n = 10n\left(\frac{1}{2}\right)^n + 11\left(\frac{1}{2}\right)^n + 34$

(b) On admet que pour tout entier naturel $n \ge 4$, on a : $0 \le 10n \left(\frac{1}{2}\right)^n \le \frac{10}{n}$. Que peut-on en déduire quant à la convergence de la suite (w_n) ?

Correction:

On a :
$$0 \le 10n \left(\frac{1}{2}\right)^n \le \frac{10}{n}$$
.
et $\lim_{n \to +\infty} \frac{10}{n} = 0$, donc par théorème des gendarmes $\lim_{n \to +\infty} 10n \left(\frac{1}{2}\right)^n = 0$.

De plus nous savons déjà que
$$\lim_{n\to +\infty}11\left(\frac{1}{2}\right)^n=0$$
 et sachant que pour tout $n\in \mathbb{N},$ $w_n=10n\left(\frac{1}{2}\right)^n+11\left(\frac{1}{2}\right)^n+34,$ on déduit par somme :

$$\lim_{n \to +\infty} w_n = 34$$

.

$$(3 \text{ points})$$
 Soit (u_n) la suite définie par $u_0=0, u_1=7$ et, pour tout $n\in\mathbb{N},$ par :

$$u_{n+2} = \frac{u_n}{3} - \frac{u_{n+1}}{6}$$

1. Calculer u_2 .

Correction:

Pour n = 0:

$$u_2 = \frac{u_0}{3} - \frac{u_1}{6} = \frac{0}{3} - \frac{7}{6} = -\frac{7}{6}$$

- 2. Soit (s_n) la suite définie pour tout entier naturel n par $s_n = 3u_{n+1} + 2u_n$.
 - (a) Démontrer que la suite (s_n) est géométrique.

Correction:

On a:

$$\begin{split} s_{n+1} &= 3u_{n+2} + 2u_{n+1} \\ &= 3\left(\frac{u_n}{3} - \frac{u_{n+1}}{6}\right) + 2u_{n+1} \\ &= u_n - \frac{u_{n+1}}{2} + 2u_{n+1} \\ &= u_n + \frac{3}{2}u_{n+1} \\ &= \frac{1}{2}3u_{n+1} + 2u_n \\ &= \frac{1}{2}s_n \end{split}$$

Donc (s_n) est géométrique de raison $q = \frac{1}{2}$ avec $s_0 = 3u_1 + 2u_0 = 3.7 + 2.0 = 21.$

(b) En déduire, pour tout entier naturel n, l'expression de s_n en fonction de n.

Correction:

Par propriété :
$$s_n = s_0 q^n = 21 \left(\frac{1}{2}\right)^n$$
.

3. Pour tout entier naturel n, on pose $v_n = u_n - 2u_{n+1}$

On admettra les deux questions suivantes sans aucune démonstration

- (a) Démontrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
- (b) Montrer que pour tout $n \in \mathbb{N}$:

$$v_n = -14\left(-\frac{2}{3}\right)^n$$

4. \star Hors Barême : Déduire des questions 2.b. et 3.b. que, pour tout entier naturel n,

$$u_n = 6\left(\frac{1}{2}\right)^n - 6\left(\frac{-2}{3}\right)^n$$

Correction:

On a le système

$$\begin{cases} 3u_{n+1} + 2u_n = s_n & (L_1) \\ -2u_{n+1} + u_n = v_n & (L_2) \end{cases}$$

Ainsi, $2L_1 + 3L_2$ donne :

$$7u_n = 2s_n + 3v_n$$

Donc:

$$\begin{split} u_n &= \frac{1}{7}(2s_n + 3v_n) \\ &= \frac{1}{7}(42\left(\frac{1}{2}\right)^n - 42\left(-\frac{2}{3}\right)^n) \\ &= 6\left(\frac{1}{2}\right)^n - 6\left(\frac{-2}{3}\right)^n \end{split}$$

Ainsi l'égalité cherchée est démontrée.

(III) (2 points)

Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier naturel n

$$u_{n+1} = \frac{u_n}{1 + u_n}$$

1. On admet que, pour tout entier naturel n, u_n est strictement positif.

Correction:

On a pour tout $n \in \mathbb{N}$:

$$\begin{split} u_{n+1} - u_n &= \frac{u_n}{1 + u_n} - u_n \\ &= \frac{u_n - u_n - u_n^2}{1 + u_n} \\ &= \frac{-u_n^2}{1 + u_n} \end{split}$$

Et $u_n \geq 0$, donc $1+u_n>0$. De plus $u_n^2 \geq 0$, donc par produit et règle des signes : $u_{n+1}-u_n \leq 0$.

Ainsi la suite (u_n) est décroissante.

Déterminer le sens de variation de la suite (u_n) .

2. En déduire que la suite (u_n) converge.

Correction:

Nous venons de voir que (u_n) est décroissante. Elle est de plus minorée par 0. Donc par propriété, elle converge vers $\ell \geq 0$.