DS N°2 : Suites (1h15)

(9 points) Partie A

Soit (u_n) la suite définie par $u_0=30$ et, pour tout entier naturel $n,u_{n+1}=\frac{1}{2}u_n+10$. Soit (v_n) la suite définie pour tout entier naturel n par $v_n=u_n-20$.

- 1. Calculer les valeurs exactes de u_1 et u_2 .
- 2. Démontrer que la suite (v_n) est géométrique.
- 3. Exprimer v_n en fonction de n pour tout n entier naturel.
- 4. En déduire que, pour tout entier naturel n, $u_n = 20 + 10 \left(\frac{1}{2}\right)^n$.
- 5. Déterminer la limite de la suite (u_n) .

Partie B

Soit (w_n) la suite définie pour tout entier naturel n par :

$$\begin{cases} w_0 = 45 \\ w_{n+1} = \frac{1}{2}w_n + \frac{1}{2}u_n + 7 \end{cases}$$

1. Calculer que w_1 .

On souhaite écrire une fonction suite, en langage Python, qui renvoie la valeur du terme w_n pour une valeur de n donnée. On donne ci-dessous une proposition pour cette fonction suite.

```
def suite(n):
    u=30
    w=45
    n=0
    while n<30:
        u=u/2+10
        w=w/2+u/2+7
        n=n+1
    return w</pre>
```

- 2. L'exécution de suite(1) ne renvoie pas le terme w_1 . Comment modifier la fonction suite afin que l'exécution de suite(n) renvoie la valeur du terme w_n ?
- 3. (a) Montrer, par récurrence sur n, que pour tout entier naturel n on a :

$$w_n = 10n \left(\frac{1}{2}\right)^n + 11 \left(\frac{1}{2}\right)^n + 34$$

(b) On admet que pour tout entier naturel $n \ge 4$, on a : $0 \le 10n \left(\frac{1}{2}\right)^n \le \frac{10}{n}$. Que peut-on en déduire quant à la convergence de la suite (w_n) ? (3 points) Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = 7$ et, pour tout $n \in \mathbb{N}$, par :

$$u_{n+2} = \frac{u_n}{3} - \frac{u_{n+1}}{6}$$

- 1. Calculer u_2 .
- 2. Soit (s_n) la suite définie pour tout entier naturel n par $s_n = 3u_{n+1} + 2u_n$.
 - (a) Démontrer que la suite (s_n) est géométrique.
 - (b) En déduire, pour tout entier naturel n, l'expression de s_n en fonction de n.
- 3. Pour tout entier naturel n, on pose $v_n = u_n 2u_{n+1}$

On admettra les deux questions suivantes sans aucune démonstration

- (a) Démontrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
- (b) Montrer que pour tout $n \in \mathbb{N}$:

$$v_n = -14\left(-\frac{2}{3}\right)^n$$

4. \star Hors Barême : Déduire des questions 2.b. et 3.b. que, pour tout entier naturel n,

$$u_n = 6\left(\frac{1}{2}\right)^n - 6\left(\frac{-2}{3}\right)^n$$

(III) (2 points)

 $\overline{\text{Soit}}$ (u_n) la suite définie par $u_0=1$ et pour tout entier naturel n

$$u_{n+1} = \frac{u_n}{1 + u_n}$$

- 1. On admet que, pour tout entier naturel n, u_n est strictement positif. Déterminer le sens de variation de la suite (u_n) .
- 2. En déduire que la suite (u_n) converge.