(6 points)

Déterminer dans chaque cas la limite de f à l'endroit indiqué.

$$f_1(x) = -3x^4 + x - 3;$$
 en $-\infty$

$$f_3(x) = \frac{-2x - 1}{x^2 + 6x + 8};$$
 en -4^+

$$f_2(x) = \frac{3x^4 + 4x}{x^3 - x - 3}; \quad \text{ en } -\infty$$

$$f_4(x) = \frac{-2x - 10}{x^2 + 3x - 10};$$
 en -5

Correction:

- 1. On a pour $x \neq 0$: $f_1(x) = x^4(-3 + \frac{1}{x^3} 3\frac{1}{x^4})$. Et par somme $\lim_{x \to -\infty} (-3 + \frac{1}{x^3} - 3\frac{1}{x^4}) = -3$ et $\lim_{x \to -\infty} x^4 = +\infty$. Donc par produit $\lim_{x \to -\infty} f_1(x) = -\infty$.
- 2. On a pour $x \neq 0$:

$$\begin{split} f_2(x) &= \frac{x^4(3 + \frac{4}{x^3})}{x^3(1 - \frac{1}{x^2} - \frac{3}{x^3})} \\ &= \frac{x(3 + \frac{4}{x^3})}{(1 - \frac{1}{x^2} - \frac{3}{x^3})} \end{split}$$

 $\begin{array}{l} \mathrm{Et}\, \lim_{x\to -\infty} (3+\frac{4}{x^3}) = 3\,; \, \lim_{x\to -\infty} (1-\frac{1}{x^2}-\frac{3}{x^3}) = 1\,; \, \lim_{x\to -\infty} x = -\infty, \\ \mathrm{donc} \; \mathrm{par} \; \mathrm{produit} \; \mathrm{et} \; \mathrm{quotient}, \, \lim_{x\to -\infty} f_2(x) = -\infty. \end{array}$

3. On a $x^2 + 6x + 8 = (x+4)(x+2)$ donc

		V .	/ (
x		∞	-4		-2		$+\infty$
$x^2 + 6x -$	+ 8	+	0	_	0	+	

On a $\lim_{x\to -4} -2x -1 = 7$, et d'après le tableau de signe : $\lim_{x\to -4^+} x^2 +6x +8 = 0^-$.

Alors par quotient, $\lim_{x \to -4^+} \frac{-2x-1}{x^2+6x+8} = -\infty$.

4. On a

$$f_4(x) = \frac{-2x - 10}{x^2 + 3x - 10}$$
$$= \frac{-2(x+5)}{(x+5)(x-2)}$$
$$= \frac{-2}{x-2}$$

Donc $\lim_{x \to -5} f_4(x) = \frac{2}{7}$

(6 points)

Déterminer dans chaque cas la limite de f à l'endroit indiqué.

$$f_1(x) = -3x^5 - x^2x - 3;$$
 en $-\infty$

$$f_3(x) = \frac{-2x-1}{x^2-3x-10};$$
 en -2^+

$$f_2(x) = \frac{3x^4 + 4x}{x^5 - x - 3};$$
 en $-\infty$

$$f_4(x) = \frac{x^2 + 3x - 10}{-3x - 15};$$
 en -5

Correction:

- 1. On a pour $x \neq 0$: $f_1(x) = x^5(-3 \frac{1}{x^2} 3\frac{1}{x^5})$. Et par somme $\lim_{x \to -\infty} (-3 - \frac{1}{x^2} - 3\frac{1}{x^5}) = -3$ et $\lim_{x \to -\infty} x^5 = -\infty$. Donc par produit $\lim_{x \to -\infty} f_1(x) = +\infty$.
- 2. On a pour $x \neq 0$:

$$f_2(x) = \frac{x^4(3 + \frac{4}{x^3})}{x^5(1 - \frac{1}{x^4} - \frac{3}{x^5})}$$
$$= \frac{1}{x} \frac{(3 + \frac{4}{x^3})}{(1 - \frac{1}{x^4} - \frac{3}{x^5})}$$

 $\begin{array}{l} \mathrm{Et} \lim_{x \to -\infty} (3 + \frac{4}{x^3}) = 3 \, ; \, \lim_{x \to -\infty} (1 - \frac{1}{x^4} - \frac{3}{x^5}) = 1 \, ; \, \lim_{x \to -\infty} \frac{1}{x} = 0, \\ \mathrm{donc \; par \; produit \; et \; quotient}, \, \lim_{x \to -\infty} f_2(x) = 0. \end{array}$

3. On a $x^2 - 3x - 10 = (x+2)(x-5)$ donc

			\	/ \		/		
	x	$-\infty$		-2		5		$+\infty$
x^2	-3x - 10		+	0	_	0	+	

On a $\lim_{x\to -2} -2x -1 = 3$, et d'après le tableau de signe : $\lim_{x\to -2^+} x^2 -3x -10 = 0^-$.

Alors par quotient, $\lim_{x\to-2^+}\frac{-2x-1}{x^2-3x-10}=-\infty$.

4. On a

$$f_4(x) = \frac{x^2 + 3x - 10}{-3x - 15}$$
$$= \frac{(x+5)(x-2)}{-3(x+5)}$$
$$= \frac{x-2}{2}$$

Donc $\lim_{x \to -5} f_4(x) = \frac{7}{3}$

(6 points)

Déterminer dans chaque cas la limite de f à l'endroit indiqué.

$$f_1(x) = \, -3x^5 - x^2x - 3\,; \quad \text{ en } + \infty$$

$$f_3(x) = \frac{-2x-1}{x^2-7x+10};$$
 en 2^+

$$f_2(x) = \frac{3x^4 + 4x}{x^4 - x};$$
 en $-\infty$

$$f_4(x) = \frac{x^2 + 2x - 8}{-3x - 12};$$
 en -4

Correction:

- 1. On a pour $x \neq 0$: $f_1(x) = x^5(-3 \frac{1}{x^2} 3\frac{1}{x^5})$. Et par somme $\lim_{x \to +\infty} (-3 - \frac{1}{x^2} - 3\frac{1}{x^5}) = -3$ et $\lim_{x \to +\infty} x^5 = +\infty$. Donc par produit $\lim_{x \to +\infty} f_1(x) = -\infty$.
- 2. On a pour $x \neq 0$:

$$\begin{split} f_2(x) &= \frac{x^4(3+\frac{4}{x^3})}{x^4(1-\frac{1}{x^3})} \\ &= \frac{(3+\frac{4}{x^3})}{(1-\frac{1}{x^3})} \end{split}$$

$$\begin{array}{l} \mathrm{Et} \, \lim_{x \to -\infty} (3 + \frac{4}{x^3}) = 3 \, ; \, \lim_{x \to -\infty} (1 - \frac{1}{x^3}) = 1 \, \, , \\ \mathrm{donc} \, \, \mathrm{par} \, \, \mathrm{produit} \, \, \mathrm{et} \, \, \mathrm{quotient}, \, \lim_{x \to -\infty} f_2(x) = 3. \end{array}$$

3. On a $x^2 - 7x + 10 = (x - 2)(x - 5)$ donc

x	$-\infty$		2		5	$+\infty$
$x^2 - 7x + 10$		+	0	_	0	+

On a $\lim_{x\to 2} -2x - 1 = -5$, et d'après le tableau de signe : $\lim_{x\to 2^+} x^2 - 7x + 10 = 0^-$.

Alors par quotient, $\lim_{x\to 2^+} \frac{-2x-1}{x^2-7x+10} = +\infty$.

4. On a

$$f_4(x) = \frac{x^2 + 2x - 8}{-3x - 12}$$
$$= \frac{(x+4)(x-2)}{-3(x+4)}$$
$$= \frac{x-2}{-3}$$

Donc $\lim_{x \to -4} f_4(x) = 2$

(6 points)

Déterminer dans chaque cas la limite de f à l'endroit indiqué.

$$f_1(x) = \, -3x^6 - x^2x - 3\,; \quad \text{ en } -\infty$$

$$f_3(x) = \frac{-2x-1}{x^2-5x+6};$$
 en 2⁺

$$f_2(x) = \ \frac{3x^3 + 4x}{x^4 - x} \,; \quad \text{ en } + \infty$$

$$f_4(x) = \frac{-5x - 20}{x^2 + 2x - 8};$$
 en -4

Correction:

- 1. On a pour $x \neq 0$: $f_1(x) = x^6(-3 \frac{1}{x^3} 3\frac{1}{x^6})$. Et par somme $\lim_{x \to -\infty} (-3 - \frac{1}{x^3} - 3\frac{1}{x^6}) = -3$ et $\lim_{x \to -\infty} x^6 = +\infty$. Donc par produit $\lim_{x \to -\infty} f_1(x) = -\infty$.
- 2. On a pour $x \neq 0$:

$$f_2(x) = \frac{x^3(3 + \frac{4}{x^2})}{x^4(1 - \frac{1}{x^3})}$$
$$= \frac{1}{x} \frac{(3 + \frac{4}{x^2})}{(1 - \frac{1}{x^3})}$$

 $\begin{array}{l} \mathrm{Et}\, \lim_{x\to +\infty} (3+\frac{4}{x^2}) = 3\,;\, \lim_{x\to +\infty} (1-\frac{1}{x^3}) = 1\,;\, \lim_{x\to +\infty} \frac{1}{x} = 0,\\ \mathrm{donc\;par\;produit\;et\;quotient},\, \lim_{x\to +\infty} f_2(x) = 0. \end{array}$

3. On a $x^2 - 5x + 6 = (x - 2)(x - 3)$ donc

•	\	/ (/	
x	$-\infty$	2	3	$+\infty$
$x^2 - 5x + 6$		+ 0	- 0	+

On a $\lim_{x\to 2} -2x - 1 = -5$, et d'après le tableau de signe : $\lim_{x\to 2^+} x^2 - 5x + 6 = 0^-$.

Alors par quotient, $\lim_{x\to 2^+} \frac{-2x-1}{x^2-5x+6} = +\infty$.

4. On a

$$f_4(x) = \frac{-5x - 20}{x^2 + 2x - 8}$$
$$= \frac{-5(x+4)}{(x+4)(x-2)}$$
$$= \frac{-5}{x-2}$$

Donc $\lim_{x \to -4} f_4(x) = \frac{5}{6}$