Devoir de Mathématiques Nº 12 (2 heures)

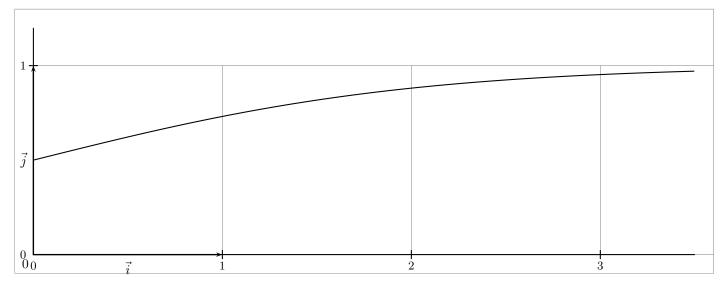
Exercice 1:3,5 points

On désigne par f la fonction définie sur l'ensemble \mathbb{R}_+ des nombres réels par

$$f(x) = \frac{1}{1 + e^{-x}}.$$

On note \mathcal{C} la courbe representative de f dans un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$, (unité graphique : 5 cm). Voir graphique ci-joint.

- 1. (a) Déterminer la limite de f en $+\infty$ et donner une interprétation géométrique.
 - (b) Dresser le tableau de variations de f sur \mathbb{R}_+ .
- 2. Soit n un entier naturel. On désigne par D_n le domaine du plan limité par la droite d'équation y = 1, la courbe \mathcal{C} et les droites d'équations x = 0 et x = n, \mathcal{A}_n désigne l'aire du domaine D_n exprimée en unité d'aire en cm^2 .
 - (a) Calculer \mathcal{A}_n .
 - (b) Étudier la limite éventuelle de A_n , lorsque n tend vers $+\infty$.



Exercice 2:6,5 points

Pour tout entier n, on considère l'intégrale

$$I_n = \int_1^e (\ln x)^n dx$$

1. (a) Démontrer que pour tout x dans l'intervalle [1;e] et pour tout entier naturel n, on a

$$(\ln x)^n - (\ln x)^{n+1} \ge 0$$

- (b) En déduire que la suite (I_n) est décroissante.
- 2. (a) Démontrer à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$:

$$I_{n+1} = e - (n+1)I_n$$

- (b) Calculer I_0 . En déduire I_1 et I_2 .
- 3. (a) Démontrer que pour tout $n, I_n \ge 0$
 - (b) Démontrer que pour tout $n, (n+1)I_n \leq e$
 - (c) En déduire la limite de I_n

Exercice 3:4,5 points

On considère les fonctions f et g définies sur \mathbb{R} par

$$f(x) = e^{-x^2}$$
 et $g(x) = x^2 e^{-x^2}$.

On note respectivement C_f et C_g les courbes représentatives de f et g dans un repère orthogonal $(O; \overrightarrow{i}, \overrightarrow{j})$, dont les tracés se trouvent ci-joint.

On admettra les résultats suivants :

- Les fonctions f et g sont dérivables.
- Sur \mathbb{R}^+ , f est décroissante.
- g croissante sur [0;1] et décroissante sur $[1;+\infty[$.
- C_f et C_g s'intersectent au point A d'abscisse 1.
- La limite de f et g en $+\infty$ est 0.

On considère la fonction G définie sur \mathbb{R}_+ par

$$G(x) = \int_0^x t^2 e^{-t^2} dt.$$

- 1. Que représente G pour la fonction g?
- 2. Donner, pour x > 0, une interprétation de G(x) en termes d'aires.
- 3. Étudier le sens de variations de G sur \mathbb{R} .

 On définit la fonction F sur \mathbb{R} par : pour tout réel x, $F(x) = \int_0^x e^{-t^2} dt$.
- 4. Démontrer, que, pour tout réel x, $G(x) = \frac{1}{2} \left[F(x) x e^{-x^2} \right]$; (on pourra commencer par comparer les fonctions dérivées de G et de $x \mapsto \frac{1}{2} \left[F(x) x e^{-x^2} \right]$.

On admet que la fonction F admet une limite finie ℓ en $+\infty$, et que cette limite ℓ est égale à l'aire, en unités d'aire, du domaine A limité par la courbe C_f et les demi-droites $[O; \overrightarrow{i})$ et $[O; \overrightarrow{j})$.

- 5. (a) Démontrer que la fonction G admet une limite en $+\infty$ que l'on précisera.
 - (b) Interpréter en termes d'aires le réel $N = \int_0^1 (1 t^2) e^{-t^2} dt$.
 - (c) Question Bonus : En admettant que la limite de G en $+\infty$ représente l'aire \mathcal{P} en unités d'aire du domaine \mathcal{D} limité par la demi-droite $[O; \overrightarrow{\imath})$ et la courbe \mathcal{C}_g justifier graphiquement que :

$$\int_0^1 (1 - t^2) e^{-t^2} dt \ge \frac{\ell}{2}.$$

(on pourra illustrer le raisonnement sur la figure fournie)

Exercice 4:5,5 points

Soit f définie sur \mathbb{R}_+ par

$$f(x) = \frac{1}{e^x + e^{-x}}$$

- 1. (a) Montrer que pour tout $x \ge 0$ on a $e^{-x} \le e^x$.
 - (b) Montrer que f est décroissante sur \mathbb{R}_+ et dresser le tableau de variations (complet) de f sur $[0; +\infty[$.
- 2. Pour n entier naturel, on considère

$$I_n = \int_n^{n+1} f(x) dx$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
- (b) Montrer que pour tout $n \in \mathbb{N}$

$$f(n+1) \le I_n \le f(n)$$

- (c) En déduire que (I_n) est décroissante.
- (d) Montrer que (I_n) converge.